Recitation 9. May 11

Focus: probability (discrete and continuous), random variables, principal component analysis (PCA)
A random variable is a quantity X that takes values in \mathbb{R}. It can be either:

- discrete: X takes only countably many possible values x_{i} each with probability p_{i}
- continuous: X is associated to a probability distribution $p(x)$ (where $p: \mathbb{R} \rightarrow \mathbb{R}$ is a function).

The mean (sometimes called "expected value") $E[X]$ of X is the quantity:

- $\sum_{i} x_{i} p_{i}$ if X is discrete
- $\int_{-\infty}^{\infty} x p(x) d x$ if X is continuous

The mean is linear: if X, Y are random variables and $a, b \in \mathbb{R}$, then $E[a X+b Y]=a E[X]+b E[Y]$.
Given two random variables X, Y, their covariance $\Sigma_{X Y}=E[(X-E[X])(Y-E[Y])]$ is:

- $\sum_{i j} p_{i j}\left(x_{i}-\mu\right)\left(y_{j}-\nu\right)$ if X is discrete
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\mu)(y-\nu) p(x, y) d x d y$ if X is continuous

The covariance of X with itself is called the variance $\Sigma_{X X}$.
Given n random variables X_{1}, \ldots, X_{n}, we may assemble them into a vector $\boldsymbol{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$, called a random vector .
The covariance matrix of these random variables X_{1}, \ldots, X_{n} is the matrix

$$
K=\left[\begin{array}{ccc}
\Sigma_{X_{1} X_{1}} & \cdots & \Sigma_{X_{1} X_{n}} \\
\vdots & \ddots & \vdots \\
\Sigma_{X_{n} X_{1}} & \cdots & \Sigma_{X_{n} X_{n}}
\end{array}\right]=E\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right], \quad \text { where } \quad \boldsymbol{\mu}=E[\boldsymbol{X}]=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right]=\left[\begin{array}{c}
E\left[X_{1}\right] \\
\vdots \\
E\left[X_{n}\right]
\end{array}\right]
$$

K is always positive semidefinite. It is positive definite unless a linear combination of X_{1}, \ldots, X_{n} is constant. Principal component analysis (PCA) involves diagonalizing the covariance matrix:

$$
K=Q D Q^{T}
$$

where Q is orthogonal and D is diagonal. This means that the random vector $\boldsymbol{Y}=Q^{T} \boldsymbol{X}$ has diagonal covariance $\operatorname{matrix} D$, i.e. its entries are uncorrelated random variables (i.e. have covariance 0). In other words:

$$
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
q_{11} & \cdots & q_{n 1} \\
\vdots & \ddots & \vdots \\
q_{1 n} & \cdots & q_{n n}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right] \quad \Rightarrow \quad\left\{Y_{i}=q_{1 i} X_{1}+\cdots+q_{n i} X_{n}\right\}_{i \in\{1, \ldots, n\}}
$$

are linear combinations of X_{1}, \ldots, X_{n} that are (by construction) uncorrelated. The individual variances of the random variables Y_{1}, \ldots, Y_{n} are the diagonal entries of the diagonal matrix D.

1. Sample from the numbers 1 to 1000 with equal probabilities $1 / 1000$, and look at the last digit of the sample, squared. This square can end with $X=0,1,4,5,6$, or 9 . What are the probabilities $p_{0}, p_{1}, p_{4}, p_{5}, p_{6}$ and p_{9} that each of these digits occurs among the sample? Compute the mean and variance of X.

Solution:

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local shelter, respectively. Suppose the random vector $\left[\begin{array}{c}A \\ H \\ W\end{array}\right]$ takes two values, $\left[\begin{array}{c}7 \\ 20 \\ 132\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 24 \\ 120\end{array}\right]$ with probabilities p and $1-p$ respectively. Compute the covariance matrix of A, H, and W.

Solution:

3. Suppose now that the random variables A, H, W from above instead have the covariance matrix

$$
K=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -2 \\
2 & -2 & 6
\end{array}\right]
$$

Find three linear combinations of A, H, W which are pairwise uncorrelated random variables. What is the variance of each?

Solution:

4. Let X be a random variable, with mean μ and variance σ^{2}. Compute $E\left[X^{2}\right]$ in terms of μ and σ.

Solution:

