Recitation 9. May 11

Focus: probability (discrete and continuous), random variables, principal component analysis (PCA)

- A **random variable** is a quantity X that takes values in \mathbb{R} . It can be either:
 - discrete: X takes only countably many possible values x_i each with probability p_i
 - continuous: X is associated to a probability distribution p(x) (where $p : \mathbb{R} \to \mathbb{R}$ is a function).

The **mean** (sometimes called "expected value") E[X] of X is the quantity:

•
$$\sum_{i} x_{i} p_{i}$$
 if X is discrete
• $\int_{-\infty}^{\infty} x p(x) dx$ if X is continuous

The mean is linear: if X, Y are random variables and $a, b \in \mathbb{R}$, then E[aX + bY] = aE[X] + bE[Y].

Given two random variables X, Y, their **covariance** $\Sigma_{XY} = E[(X - E[X])(Y - E[Y])]$ is:

•
$$\sum_{ij} p_{ij}(x_i - \mu)(y_j - \nu)$$
 if X is discrete
•
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu)(y - \nu)p(x, y) \, dx dy$$
 if X is continuous

The covariance of X with itself is called the **variance** Σ_{XX} .

Given *n* random variables X_1, \ldots, X_n , we may assemble them into a vector $\boldsymbol{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$, called a **random vector**.

The **covariance matrix** of these random variables X_1, \ldots, X_n is the matrix

$$K = \begin{bmatrix} \Sigma_{X_1 X_1} & \cdots & \Sigma_{X_1 X_n} \\ \vdots & \ddots & \vdots \\ \Sigma_{X_n X_1} & \cdots & \Sigma_{X_n X_n} \end{bmatrix} = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T], \quad \text{where} \quad \boldsymbol{\mu} = E[\boldsymbol{X}] = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} E[X_1] \\ \vdots \\ E[X_n] \end{bmatrix}$$

K is always positive semidefinite. It is positive definite unless a linear combination of X_1, \ldots, X_n is constant.

Principal component analysis (PCA) | involves diagonalizing the covariance matrix:

$$K = QDQ^T$$

where Q is orthogonal and D is diagonal. This means that the random vector $\mathbf{Y} = Q^T \mathbf{X}$ has diagonal covariance matrix D, i.e. its entries are uncorrelated random variables (i.e. have covariance 0). In other words:

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} q_{11} & \cdots & q_{n1} \\ \vdots & \ddots & \vdots \\ q_{1n} & \cdots & q_{nn} \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \qquad \Rightarrow \qquad \left\{ Y_i = q_{1i}X_1 + \cdots + q_{ni}X_n \right\}_{i \in \{1, \dots, n\}}$$

are linear combinations of X_1, \ldots, X_n that are (by construction) uncorrelated. The individual variances of the random variables Y_1, \ldots, Y_n are the diagonal entries of the diagonal matrix D.

1. Sample from the numbers 1 to 1000 with equal probabilities 1/1000, and look at the last digit of the sample, squared. This square can end with X = 0, 1, 4, 5, 6, or 9. What are the probabilities p_0, p_1, p_4, p_5, p_6 and p_9 that each of these digits occurs among the sample? Compute the mean and variance of X.

Solution:

2.	Let A, H , and W denote random variables	s coi	responding to the a	ge, h	eight, a	and w	reight of dogs at a local shelter,
		$\left\lceil A \right\rceil$		[7]		$\begin{bmatrix} 4 \end{bmatrix}$	
	respectively. Suppose the random vector	H	takes two values,	20	and	24	with probabilities p and $1-p$
		W		132		120	
	respectively. Compute the covariance mat	rix o	of A, H , and W .				

Solution:

3. Suppose now that the random variables A, H, W from above instead have the covariance matrix

$$K = \begin{bmatrix} 3 & -1 & 2 \\ -1 & 3 & -2 \\ 2 & -2 & 6 \end{bmatrix}.$$

Find three linear combinations of A, H, W which are pairwise uncorrelated random variables. What is the variance of each?

Solution:

4. Let X be a random variable, with mean μ and variance σ^2 . Compute $E[X^2]$ in terms of μ and σ .

Solution: